Search results for "vegetation indices"
showing 10 items of 22 documents
Intraspecific Differences in Spectral Reflectance Curves as Indicators of Reduced Vitality in High-Arctic Plants
2017
Remote sensing is a suitable candidate for monitoring rapid changes in Polar regions, offering high-resolution spectral, spatial and radiometric data. This paper focuses on the spectral properties of dominant plant species acquired during the first week of August 2015. Twenty-eight plots were selected, which could easily be identified in the field as well as on RapidEye satellite imagery. Spectral measurements of individual species were acquired, and heavy metal contamination stress factors were measured contemporaneously. As a result, a unique spectral library of dominant plant species, heavy metal concentrations and damage ratios were achieved with an indication that species-specific chan…
Estimation of the time lag occurring between vegetation indices and aridity indices in a Sicilian semi-arid catchment
2009
The evolution of drought phenomena in a Sicilian semi-arid catchment has been analyzed processing both remote sensing images and climatic data for the period 1985-2000. The remote sensing dataset includes Landsat TM and ETM+ multispectral images, while the climatic dataset includes monthly rainfall and air temperature. The results have been specifically discussed for areas where it is possible to neglect agricultural activities and vegetation growth is only influenced by natural forcing. The main outcome of this study is the quantification of the time lag between the remote sensing retrieved vegetation indices and the aridity indices (AIs) calculated from climatic data. Moreover the obtaine…
On the use of unmanned aerial systems for environmental monitoring
2018
[EN] Environmental monitoring plays a central role in diagnosing climate and management impacts on natural and agricultural systems; enhancing the understanding of hydrological processes; optimizing the allocation and distribution of water resources; and assessing, forecasting, and even preventing natural disasters. Nowadays, most monitoring and data collection systems are based upon a combination of ground-based measurements, manned airborne sensors, and satellite observations. These data are utilized in describing both small-and large-scale processes, but have spatiotemporal constraints inherent to each respective collection system. Bridging the unique spatial and temporal divides that li…
Mapping productivity and essential biophysical parameters of cultivated tropical grasslands from sentinel-2 imagery.
2020
Nitrogen (N) is the main nutrient element that maintains productivity in forages
Remote sensing of vegetation dynamics in agro-ecosystems using smap vegetation optical depth and optical vegetation indices
2017
The ESA's SMOS and the NASA's SMAP missions, launched in 2009 and 2015, respectively, are the first two missions having on-board L-band microwave sensors, which are very sensitive to the water content in soils and vegetation. Focusing on the vegetation signal at L-band, we have implemented an inversion approach for SMAP that allows deriving vegetation optical depth (VOD, a microwave parameter related to biomass and plant water content) alongside soil moisture, without reliance on ancillary optical information on vegetation. This work aims at using this new observational data to monitor the phenology of crops in major global agro-ecosystems and enhance present agricultural monitoring and pre…
Analyse spectrale et texturale de données à haute résolution pour la détection automatique des maladies de la vigne
2019
‘Flavescence dorée’ is a contagious and incurable disease present on the vine leaves. In order to contain the infection, the regulations require growers to control each of the vine rows and to remove the suspect vine plants. This monitoring is done on foot during the harvest and mobilizes many people during a strategic period for viticulture. In order to solve this problem, the DAMAV project (Automatic detection of Vine Diseases) aims to develop a solution for automated detection of vine diseases using a micro-drone. The goal is to offer a turnkey solution for wine growers. This tool will allow the search for potential foci, and then more generally any type of vine diseases detectable on th…
Coupling two radar backscattering models to assess soil roughness and surface water content at farm scale
2013
Remote sensing techniques are useful for agro-hydrological monitoring at the farm scale because the availability of spatially and temporally distributed data improves agricultural models for irrigation and crop yield optimization under water scarcity conditions. This research focuses on the surface water content retrieval using active microwave data. Two semi-empirical models were chosen as these showed the best performances in simulating cross and co-polarized backscatter. Thus, these models were coupled to obtain reliable assessments of both soil water content and soil roughness. The use of the coupled model enables one to avoid using roughness measured in situ. Remote sensing images and …
Quantifying the Robustness of Vegetation Indices through Global Sensitivity Analysis of Homogeneous and Forest Leaf-Canopy Radiative Transfer Models
2019
Vegetation indices (VIs) are widely used in optical remote sensing to estimate biophysical variables of vegetated surfaces. With the advent of spectroscopy technology, spectral bands can be combined in numerous ways to extract the desired information. This resulted in a plethora of proposed indices, designed for a diversity of applications and research purposes. However, it is not always clear whether they are sensitive to the variable of interest while at the same time, responding insensitive to confounding factors. Hence, to be able to quantify the robustness of VIs, a systematic evaluation is needed, thereby introducing a widest possible variety of biochemical and structural heterogeneit…
High-resolution UAV imagery for field olive (Olea europaea L.) phenotyping
2021
Remote sensing techniques based on images acquired from unmanned aerial vehicles (UAVs) could represent an effective tool to speed up the data acquisition process in phenotyping trials and, consequently, to reduce the time and cost of the field work. In this study, we assessed the ability of a UAV equipped with RGB-NIR cameras in highlighting differences in geometrical and spectral canopy characteristics between eight olive cultivars planted at different planting distances in a hedgerow olive orchard. The relationships between measured and estimated canopy height, projected canopy area and canopy volume were linear regardless of the different cultivars and planting distances (RMSE of 0.12 m…
Angular Dependency of Hyperspectral Measurements over Wheat Characterized by a Novel UAV Based Goniometer
2015
In this study we present a hyperspectral flying goniometer system, based on a rotary-wing unmanned aerial vehicle (UAV) equipped with a spectrometer mounted on an active gimbal. We show that this approach may be used to collect multiangular hyperspectral data over vegetated environments. The pointing and positioning accuracy are assessed using structure from motion and vary from σ = 1° to 8° in pointing and σ = 0.7 to 0.8 m in positioning. We use a wheat dataset to investigate the influence of angular effects on the NDVI, TCARI and REIP vegetation indices. Angular effects caused significant variations on the indices: NDVI = 0.83–0.95; TCARI = 0.04–0.116; REIP = 729–735 nm. Our analysis high…